The epsx0 function and the cas variable eps, The peval function, The tchebycheff function – HP 50g Graphing Calculator User Manual

Page 199

Advertising
background image

Page 5-22

The EPSX0 function and the CAS variable EPS

The variable

ε

(epsilon) is typically used in mathematical textbooks to represent

a very small number. The calculator’s CAS creates a variable EPS, with default
value 0.0000000001 = 10

-10

, when you use the EPSX0 function. You can

change this value, once created, if you prefer a different value for EPS. The
function EPSX0, when applied to a polynomial, will replace all coefficients
whose absolute value is less than EPS with a zero. Function EPSX0 is not
available in the ARITHMETIC menu, it must be accessed from the function
catalog (N). Example:

EPSX0(‘X^3-1.2E-12*X^2+1.2E-6*X+6.2E-11)=
‘X^3-0*X^2+.0000012*X+0’.
With μ: ‘X^3+.0000012*X’.

The PEVAL function

The functions PEVAL (Polynomial EVALuation) can be used to evaluate a
polynomial p(x) = a

n

x

n

+a

n-1

x

n-1

+ …+ a

2

x

2

+a

1

x+ a

0

, given an array of

coefficients [a

n

, a

n-1

, … a

2

, a

1

, a

0

] and a value of x

0

. The result is the

evaluation p(x

0

). Function PEVAL is not available in the ARITHMETIC menu, it

must be accessed from the function catalog

(‚N). Example:

PEVAL([1,5,6,1],5) = 281.

The TCHEBYCHEFF function

The function TCHEBYCHEFF(n) generates the Tchebycheff (or Chebyshev)
polynomial of the first kind, order n, defined as T

n

(X) = cos(n

arccos(X)). If the

integer n is negative (n < 0), the function TCHEBYCHEFF(n) generates the
Tchebycheff polynomial of the second kind, order n, defined as T

n

(X) =

sin(n

arccos(X))/sin(arccos(X)). Examples:

TCHEBYCHEFF(3) = 4*X^3-3*X

TCHEBYCHEFF(-3) = 4*X^2-1

Note: you could get the latter result by using PROPFRAC:

PROPFRAC(‘(X^3-2*X+2)/(X-1)’) = ‘X^2+X-1 + 1/(X-1)’.

Advertising